JKSimBlast Underground Software

JKSimBlast developed by the Julius Kruttschnitt Mineral Research Centre (JKMRC) was used to encode the single ring component of *FRAGMENTO*. The figure below shows the graphical user interface currently available. Specific programming allowed for the requirement to enable the direct transfer of all modelling output into Excel spreadsheets for final analysis and interpretation.

The package runs under the Microsoft Windows operating system (i.e. Win98,2000, NT & XP). It consists of two modules, the blast management system (BMS), shown on the left of the screen dump; and the 2DRing design and analysis module, shown on the right on the screen dump. The BMS is the organisation centre, where the user can define and relate the data created and collected by the 2DRing design program and other applications. A BMS database is automatically generated and displayed in a Tree-View control. In 2DRing, the user can create multiple ring designs consisting of blast holes, decks, down-hole and surface delays and connections. The design can be further described by strings and polygons defining orebody outlines, drilling boundaries and underground openings. All data is stored in Microsoft Access databases with full 3D details.

Single ring fragmentation model- Quick user's guide

This guide assumes that the user is familiar with the input of design information into the BMS and 2DRing design modules. Detailed help files are available to software users and can be obtained from http://www.jksimblast.com/help.htm.

This document guides the user through the procedures required to run the single ring

component of *FRAGMENTO*. As mentioned earlier, the output available consists mainly of the algorithms developed to estimate "coarse" fragmentation outcomes. Only a simplified version of the fines modelling component has been incorporated in the software at this stage.

For a given drilled and charged ring, activate the selection mask and define the blasting area or boundary region bounded by the drilled and charged blastholes

From the Tools+Fragmentation Model... menu item, activate the fragmentation model dialog. This main dialog contains four major tabs which help the user manage all key input parameters and final output. The following table describes the items in each of these tabs.

In the Control tab the user sets the basic calculation requirements of the model:

- The calculation grid resolution sets the resolution of the PPV point calculation at a distance in 3D space. The value of 0.1 m is adequate and should be maintained in most underground production blasting conditions. It should be noted that finer resolutions will increase calculation times.
- Start burden, Burden increment and End burden allow the user to set a range of burden configurations to evaluate fragmentation outcomes.

Control	Rock Properties	Rock Str	ucture	Model
Calc	ulation Grid Resolution	0.100	m	
	Start Burden	1.00	m	
	Burden increment	0.20	m	
	End Burden	5.00	m	
	Critical S/B ratio	1.0000		
V	Use Marked holes	🔽 Use	Unmark	ed holes
Γ	Smooth Fragmentation	n Curves		

- The critical S/B ratio is a simple empirical threshold which is used by the program to highlight the final selection of fragmentation results given in the Model Tab (see Model Tab description).
- Option to invoke a smoothing algorithm for the fragmentation curves output by the program and activated in the Model tab.

In the Rock Properties tab, the user sets the rock input parameters required by the model.

- The first set of rock input parameters are the Holmberg/Persson attenuation constants K, ~ and the PPV onset of breakage. The default parameters given have been shown to adequately represent metalliferous hard rock conditions.
- Rock material strength parameters are also specified here, they include Rock SG, UCS, Tensile strength, P-wave velocity, Dynamic Young's modulus and Poisson's ratio.

In the Rock Structure tab, the user sets the parameter that best describes the rock mass fracturing conditions local to the ring volume. This is defined by an estimate of the average size of in situ blocks.

🐺 Fragmentation Model Control Rock Properties Rock Structure Model Holmberg/Persson Parameters K parameter: 500.00 mm/s Choose K and Alpha from List Alpha parameter: 0.900 Onset of Breakage 4500.00 mm/s Rock SG: 2.500 UCS. 150.000 MPa Tensile Strength: 10.000 MPa P-Wave velocity: 4500.000 m/s Dynamic Young's Modulus: 50.000 GPa Poisson's Ratio: 0.250 **Close Dialog** Help

🚺 Fragn	nentation Model	
Control	Rock Properties Rock Structure	Model
	Average In-situ Block Size (m)	
	The value chosen: - Is an estimate of the average size of formed by discontinuities. - May be inferred from fracture spacin more advanced 3D rock mass modelling - Should be representative of the cond ring volume.	in-situ blocks g statistics or tools. litions local to the
	Close Dialog	Help

In the Model tab, the user is able to activate modelling calculations and obtain a list of output for each burden configuration set in the Control Tab. Output boxes are automatically selected when S/B ratios are greater than the value specified in the Control tab. The selected results can then be plotted or copied into Excel spreadsheets. The user is also able to select or deselect individual results at will or by using the "All On" or "All Off" buttons.

- Fragmentation distribution curves for the selected output can be automatically plotted by clicking on the "Plot Selected" button.
- To copy data into Excel, the user must click on the "Copy Selected" or "Copy All" buttons,
 apop ap Excel shoet and use the paste option from w

open an Excel sheet and use the paste option from within Excel.

As discussed above, standard fragmentation curves can be plotted from within 2DRing by pressing on the "Plot Selected" button. The output dialog is illustrated below.

12	Microsoft Excel - Book1															8 🛛
:B] Eile Edit View Insert Forma	it <u>T</u> ools <u>D</u> ata <u>Wi</u> ni	dow <u>H</u> elp Ado <u>b</u> e PDF	-									Туре а	question for	help 🖌 .	. 8 ×
12		X 125 18 - 💓 🖻) • 19 • 🔍 E • 1	24 科 🌆 🗃	100% 🔹 🧑	Arial	• 10 •	B I <u>U</u> ≣		E \$ %	• • • • • •	8 🗐 🗱 🙀	III • 31	· A ·		
18	1월 월 교 등 월 [5 8] 5	👌 🗐 👔 🗖 Reply v	with Changes End Rev	iew 📮 : 📆 📍	1 1 1 1											
	A1 💌 🎉 INPUT Parameters:															
	A	В	C	D	E	F	G	н	1	J	K	L	M	N	0	0
1	INPUT Parameters:	10005														_
2	Holmberg-Persson (K):	500	mm/s													
3	Holmberg-Persson (alpha):	0.9														
4	Breakage Threshold	4500	mm/s													-
0	Adiabatic Expansion Constant:	3														-
0	ROCK SG	2.68	MOS													2022
1	Treads Character	150	MPa MD-													
0	Tensile Strength:	10	MPa													_
9	Young's Modulus;	50000	wiPa													-
10	Poisson's Ratio.	0.25														
11	P-wave velocity.	4000	mus													
12	Prot Smoothing Activated/	INU														-
13	RESULI Parameters.	22														-
14	Purdop (m)	% DDV/ Proskada	Ding Volume (m62)	Ru	Outoide Ru De	hast ft/upper QE9	Me	uniformity ownor	Incity EO%	Erramonte	ED% page	Einon Size	W Deceipe	Einon unife	Characte	ni Ch
226	Editer (III)	1 AD 06609343	3/3 1606076	62,60329745	n national and the	host fit	7.646663640	n contracting export	niano 30 %	n ocertes	0.05/0/1	0.00118	2 362133	0 609009	0.05404	1
220	Size (mm)	IVMDC Modified %	043.1000370	02:00323743	0	uest in	7.040000040	0.3247.30030	0.5	0.000100	0.204041	0.00110	2.002.100	0.000020	0.20404	4
220	10000	99 14458189	hassing													-
220	5000	96 34674241														
23	2500	89 97844526														
231	2000	87 07808481														-
732	1500	82 78755556														
23	1000	75.88466887														
234	750	70.56644769														
235	500	62.79177841														
236	400	58.49683544														
237	250	49.65523798														
238	175	42.44772978														
235	100	32.50613589														
240) 50	22.73523539														
241	20	13.73589712														
242	10	9.23914467														
243	5	6:162257727														
244	1.18	2.608935049														
245																-
248	B		Contractor of the local sectors	1000	0001 222202	F000	0.000	0000	and the second							-
24/	Duruen (m)	uniformity exponent	oneosecor	D 641400007	20% passing s	cc noncron size	ter the the the	20 % passing si	2e (mm)							-
240	1.0	0.405310453	0.920931295	1 470000000	7 602404466	00.90390799	100.7200137	243.0001900								100
245	1.4	0.400012140	0.929094012	2.426140210	11 19907679	111.9/99221	224.0300430	A1E 001307								
251	20	0.432232000	0.314104311	3 474147508	14 77167612	131,4130737	347 0715166	604 4396601								-
25	22	0.510461002	0.776100061	4 557818039	18 34717973	150.2767726	145 0455926	706.0227401								-
252	30	0.555055315	0.65104808	5 673520194	21 91784458	168 7094661	615 /87559	1066 912024								-
250	34	0.558285584	0.642259701	6.812401002	25 47921062	186 7654213	693 5336467	1211 284025								
258	38	0.580520454	0.62752122	7 967362232	29.02140761	204 4044345	782 7867944	1385 191912								
256	4.2	0.590694722	0.603270584	9 132064706	32,53142856	221.5505081	895 5047044	1621.430037								
257	4.6	0.599776978	0.569146646	10.30066407	35.99520258	238,121046	1046.555135	1963.590913								
258	5.0	0.608027614	0.524730698	11.4677959	39.39906914	254.0414699	1265.589344	2504.461218								
259	3															
260																Y
н	A M \Sheet1/							<pre> </pre>			1.11171					>
D	aw = 🔓 🛛 AytoShapes = 🔪 🔌 🗖	0040	📓 🤌 • 🚄 • 🗛	• = = = =												
Rea	dy										1	1		117	10.1	100

As shown above, the output data copied into an Excel sheet contains a summary of all input parameters, modelling output parameters and fragmentation data for each burden configuration and a compiled summary of burden versus predicted uniformity, P10, P20, P50, P80 and P90 values.